ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ — поверхность, которую можно описать движением прямой по некоторой линии; напр., однополостный гиперболоид, гиперболический параболоид … Большой Энциклопедический словарь
Линейчатая поверхность — Линейчатый геликоид … Википедия
Линейчатая поверхность — совокупность прямых, зависящая от одного параметра; Л. п. можно описать движением прямой (образующей) по некоторой линии (направляющей). Л. п. разделяются на развёртывающиеся и косые. Развёртывающиеся Л. п. могут быть посредством … Большая советская энциклопедия
линейчатая поверхность — поверхность, которую можно описать движением прямой по некоторой линии, например однополостный гиперболоид, гиперболический параболоид. * * * ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ, поверхность, которую можно описать движением прямой по… … Энциклопедический словарь
ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ — поверхность, к руго можно описать движением прямой по нек рой линии, напр. однополостный гиперболоид, гиперболич. параболоид … Естествознание. Энциклопедический словарь
ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ — в дифференциальной геометрии поверхность, образованная движением прямой линии. Прямые, принадлежащие этой поверхности, называются прямолинейными образующими, а каждая кривая, пересекающая все прямолинейные образующие, направляющей кривой. Если… … Математическая энциклопедия
линейчатая поверхность — матем. Поверхность, образованная движением прямой линии (коническая, цилиндрическая и т.п.) … Словарь многих выражений
Поверхность Каталана — Поверхность Каталана линейчатая поверхность, прямолинейные образующие которой параллельны одной и той же плоскости. Её стрикционная линия плоская. Радиус вектор поверхности Каталана: , причем . Если все образующие поверхности Каталана… … Википедия
Линейчатая геометрия — раздел геометрии, в котором рассматриваются в качестве элементов пространства прямые линии. Как известно, прямая в пространстве определяется четырьмя постоянными коэффициентами а, b, р, q в уравнениях х = az + р, у = bz + q. Следовательно … Большая советская энциклопедия
поверхность — ▲ двумерное соединение ↑ непрерывный поверхность непрерывное двумерное соединение; отображение функции двух переменных; двумерная фигура, т. е. положение точки на ней определяется двумя координатами; двумерное многообразие; границей между ее… … Идеографический словарь русского языка